Olivier Thomas received the M.Sc. degree in mechanical engineering from École Normale Supérieure de Cachan, Cachan, France, and the Ph.D. degree from Pierre et Marie Curie University of Paris, Paris, France, and Telecom ParisTech, Paris, France, in 2001. He spent nine years in Conservatoire National des Arts et Métiers, Paris, as an Assistant Professor and he has been a Full Professor in mechanical engineering at Arts et Metiers Institute of Technology, Lille, France, since 2012. He is the Head of a research group of 2 assistant professors and 6 Ph.D. candidates/postdoctorates.

  • Structural mechanics (1st. year)
  • Piezoelectric energy harvesting (project, 1st. year)
  • Vibration of mechanical systems, mechanics of nonlinear systems (2nd. & 3rd. year)
  • Tuned mass damper project (2nd. year)


  • Nonlinear dynamics and vibrations of mechanical systems and structures. Geometrical nonlinearities.
  • Modelling, experiments and numerical methods for linear and nonlinear structural dynamics
  • Nonlinear model reduction. Nonlinear modes.
  • Smart electromechanical systems (piezoelectric and electromagnetic coupling)
  • Applications to vibration absorbers: mechanical (tuned mass dampers) or electromechanical shunts (resistive, resonant, negative capacitance)
  • Applications to micro/nano electromechanical systems
  • Applications to nonlinear percussion musical instruments: gongs, cymbals, steel-pans


Saya, D., Dezest, D., Welsh, A. J., MATHIEU, F., Thomas, O., Leichle, T., et al. (2020). Piezoelectric nanoelectromechanical systems integrating microcontact printed lead zirconate titanate films. Journal Of Micromechanics And Microengineering, 30, 035004. http://doi.org/10.1088/1361-6439/ab60bf
RENAULT, A., Thomas, O., & Mahé, H. (2019). Numerical antiresonance continuation of structural systems. Mechanical Systems And Signal Processing, 116, 963-984. http://doi.org/10.1016/j.ymssp.2018.07.005
Vincent, P., Descombin, A., Dagher, S., Seoudi, T., Lazarus, A., Thomas, O., et al. (2019). Nonlinear polarization coupling in freestanding nanowire/nanotube resonators. Journal Of Applied Physics, 125, 044302. http://doi.org/10.1063/1.5053955
Givois, A., Grolet, A., Thomas, O., & Deü, J. -F. (2019). On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models. Nonlinear Dynamics, 97, 1147-1781. http://doi.org/10.1007/s11071-019-05021-6
Faux, D., Thomas, O., Grondel, S., & Cattan, É. (2019). Dynamic simulation and optimization of artificial insect-sized flapping wings for a bioinspired kinematics using a two resonant vibration modes combination. Journal Of Sound And Vibration, 460, 114883. http://doi.org/10.1016/j.jsv.2019.114883
Tian, T., Kestelyn, X., Thomas, O., Amano, H., & Messina, A. R. (2018). An Accurate Third-Order Normal Form Approximation for Power System Nonlinear Analysis. Ieee Transactions On Power Systems, 33, 2128-2139. http://doi.org/10.1109/TPWRS.2017.2737462
DENIS, V., JOSSIC, M., Giraud-Audine, C., CHOMETTE, B., RENAULT, A., & Thomas, O. (2018). Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form. Mechanical Systems And Signal Processing, 106, 430-452. http://doi.org/10.1016/j.ymssp.2018.01.014
Berardengo, M., Manzoni, S., Thomas, O., & Vanali, M. (2018). Piezoelectric resonant shunt enhancement by negative capacitances: optimisation, performance and resonance cancellation. Journal Of Intelligent Material Systems And Structures, 29, 2581-2606. http://doi.org/10.1177/1045389X18770874
Faux, D., Thomas, O., Cattan, É., & Grondel, S. (2018). Two modes resonant combined motion for insect wings kinematics reproduction and lift generation. Europhysics Letters, 121, 66001. http://doi.org/10.1209/0295-5075/121/66001
Manrique-Juárez, M. D., Mathieu, F., Laborde, A., Rat, S., Shalabaeva, V., Demont, P., et al. (2018). Micromachining-Compatible, Facile Fabrication of Polymer-Nanocomposite Spin Crossover Actuators. Advanced Functional Materials. http://doi.org/10.1002/adfm.201801970
JOSSIC, M., CHOMETTE, B., DENIS, V., Thomas, O., Mamou-Mani, A., & Roze, D. (2018). Effects of internal resonances in the pitch glide of Chinese gongs. The Journal Of The Acoustical Society Of America, 144, 431-442. http://doi.org/10.1121/1.5038114
Berardengo, M., Thomas, O., Giraud-Audine, C., & Manzoni, S. (2017). Improved shunt damping with two negative capacitances: an efficient alternative to resonant shunt. Journal Of Intelligent Material Systems And Structures, 28, 2222-2238. http://doi.org/10.1177/1045389X16667556
Ribeiro, P., & Thomas, O. (2017). Non-linear modes of vibration and internal resonances in non-local beams. Journal Of Computational And Nonlinear Dynamics, 12, 031017. http://doi.org/10.1115/1.4035060
Cottanceau, É., Thomas, O., Véron, P., Alochet, M., & Deligny, R. (2017). A finite element/quaternion/asymptotic numerical method for the 3D simulation of flexible cables. Finite Elements In Analysis And Design, 139, 14-34. http://doi.org/10.1016/j.finel.2017.10.002
Thomas, O., Sénéchal, A., & Deü, J. -F. (2016). Hardening/softening behaviour and reduced order modelling of nonlinear vibrations of rotating cantilever beams. Nonlinear Dynamics, 86, 1293-1318. http://doi.org/10.1007/s11071-016-2965-0
Berardengo, M., Thomas, O., Giraud-Audine, C., & Manzoni, S. (2016). Improved resistive shunt by means of negative capacitance: new circuit, performances and multi-mode control. Smart Materials And Structures, 25, 075033. http://doi.org/10.1088/0964-1726/25/7/075033
Monteil, M., Thomas, O., & Touze, C. (2015). Identification of mode couplings in nonlinear vibrations of the steelpan. Applied Acoustics, 89, 1-15. http://doi.org/10.1016/j.apacoust.2014.08.008
Dezest, D., Thomas, O., Mathieu, F., Mazenq, L., Soyer, C., Costecalde, J., et al. (2015). Wafer-scale fabrication of self-actuated piezoelectric nanoelectromechanical resonators based on lead zirconate titanate (PZT). Journal Of Micromechanics And Microengineering, 25, 035002. http://doi.org/10.1088/0960-1317/25/3/035002
Bilbao, S., Thomas, O., Touze, C., & Ducceschi, M. (2015). Conservative Numerical Methods for the Full von Kármán Plate Equations. Numerical Methods For Partial Differential Equations. http://doi.org/10.1002/num.21974
Neukirch, S., Goriely, A., & Thomas, O. (2014). Singular inextensible limit in the vibrations of post-buckled rods: Analytical derivation and role of boundary conditions. Journal Of Sound And Vibration, 333, 962-970. http://doi.org/10.1016/j.jsv.2013.10.009
Monteil, M., Touze, C., Thomas, O., & Benacchio, S. (2014). Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1\string:2\string:4 and 1\string:2\string:2 internal resonances. Nonlinear Dynamics, 75, 175-200. http://doi.org/10.1007/s11071-013-1057-7
Thomas, O., Mathieu, F., MANSFIELD, W., HUANG, C., Trolier-McKinstry, S., & Nicu, L. (2013). Efficient parametric amplification in MEMS with integrated piezoelectric actuation and sensing capabilities. Applied Physics Letters, 102, 163504. http://doi.org/10.1063/1.4802786
Lazarus, A., Thomas, O., & Deü, J. -F. (2012). Finite elements reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS. Finite Elements In Analysis And Design, 49, 35-51. http://doi.org/10.1016/j.finel.2011.08.019
Ducarne, J., Thomas, O., & Deü, J. -F. (2012). Placement and dimension optimization of shunted piezoelectric patches for vibration reduction. Journal Of Sound And Vibration, 331, 3286-3303. http://doi.org/10.1016/j.jsv.2012.03.002
Thomas, O., Ducarne, J., & Deü, J. -F. (2012). Performance of piezoelectric shunts for vibration reduction. Smart Materials And Structures, 21, 015008. http://doi.org/10.1088/0964-1726/21/1/015008
Lamarque, C. -H., Touze, C., & Thomas, O. (2012). An upper bound for validity limits of asymptotic analytical approaches based on normal form theory. Nonlinear Dynamics, 70, 1931-1949. http://doi.org/10.1007/s11071-012-0584-y
Nezamabadi, S., Thomas, O., & Deü, J. -F. (2012). Efficient computation of non linear vibrations of piezoelectric nano-beams with a continuation technique. Journal Of Computational And Nonlinear Dynamics.
Guillon, S., Saya, D., Mazenq, L., Perisanu, S., Vincent, P., Lazarus, A., et al. (2011). Effect of non-ideal clamping shape on the resonance frequencies of silicon nanocantilevers. Nanotechnology, 22, 245501. http://doi.org/10.1088/0957-4484/22/24/245501
Touze, C., Thomas, O., & Amabili, M. (2011). Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates. International Journal Of Non-Linear Mechanics, 46, 234-246. http://doi.org/10.1016/j.ijnonlinmec.2010.09.004
Ducarne, J., Thomas, O., & Deü, J. -F. (2010). Structural vibration reduction by switch shunting of piezoelectric elements: modelling and optimization. Journal Of Intelligent Materials Systems And Structures, 21, 797-816. http://doi.org/10.1177/1045389X10367835
Lazarus, A., & Thomas, O. (2010). A harmonic-based method for computing the stability of periodic solutions of dynamical systems. Comptes Rendus Mécanique, 338, 510-517. http://doi.org/10.1016/j.crme.2010.07.020
Thomas, O., Deü, J. -F., & Ducarne, J. (2009). Vibration of an elastic structure with shunted piezoelectric patches: efficient finite-element formulation and electromechanical coupling coefficients. International Journal Of Numerical Methods In Engineering, 80, 235-268. http://doi.org/10.1002/nme.2632
Camier, C., Touze, C., & Thomas, O. (2009). Non-linear vibrations of imperfect free-edge circular plates and shells. European Journal Of Mechanics A/solids, 28, 500-515. http://doi.org/10.1016/j.euromechsol.2008.11.005
Thomas, O., Nicu, L., & Touze, C. (2009). Flambage et vibrations non-linéaires d une plaque stratifiée piézoélectrique. Application à un capteur de masse MEMS. Mécanique \& Industries, 10, 311-316. http://doi.org/10.1051/meca/2009057
Thomas, O., & Bilbao, S. (2008). Geometrically non-linear flexural vibrations of plates: in-plane boundary conditions and some symmetry properties. Journal Of Sound And Vibration, 315, 569-590. http://doi.org/10.1016/j.jsv.2008.04.014
Touze, C., Amabili, M., & Thomas, O. (2008). Reduced-order models for large-amplitude vibrations of shells including in-plane inertia. Computer Methods In Applied Mechanics And Engineering, 197, 2030-2045. http://doi.org/10.1016/j.cma.2008.01.002
Touze, C., Camier, C., Favraud, G., & Thomas, O. (2008). Effect of Imperfections and Damping on the Type of Nonlinearity of Circular Plates and Shallow Spherical Shells. Mathematical Problems In Engineering, 2008, ID 678307. http://doi.org/10.1155/2008/678307
Thomas, O., Touze, C., & Luminais, É. (2007). Non-linear vibrations of free-edge thin spherical shells: experiments on a 1\string:1\string:2 internal resonance. Nonlinear Dynamics, 49, 259-284. http://doi.org/10.1016/j.ijsolstr.2004.10.028
Touze, C., & Thomas, O. (2006). Non-linear behaviour of free-edge shallow spherical shells: effect of the geometry. International Journal Of Non-Linear Mechanics, 41, 678-692. http://doi.org/10.1016/j.ijnonlinmec.2005.12.004
Chaigne, A., Touze, C., & Thomas, O. (2005). Nonlinear vibrations and chaos in gongs and cymbals. Acoustical Science And Technology, 26, 403-409. http://doi.org/10.1250/ast.26.403
Thomas, O., Touze, C., & Chaigne, A. (2005). Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1\string:1\string:2 internal resonance. International Journal Of Solids And Structures, 42, 3339-3373. http://doi.org/10.1016/j.ijsolstr.2004.10.028
Touze, C., Thomas, O., & Chaigne, A. (2004). Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. Journal Of Sound Vibration, 273, 77-101. http://doi.org/10.1016/j.jsv.2003.04.005
Touze, C., Thomas, O., & Huberdeau, A. (2004). Asymptotic non-linear normal modes for large amplitude vibrations of continuous structures. Computers And Structures, 82, 2671-2682. http://doi.org/10.1016/j.compstruc.2004.09.003
Thomas, O., Touze, C., & Chaigne, A. (2003). Asymmetric non-linear forced vibrations of free-edge circular plates, part 2: experiments. Journal Of Sound And Vibration, 265, 1075-1101. http://doi.org/10.1016/S0022-460X(02)01564-X
Touze, C., Thomas, O., & Chaigne, A. (2002). Asymmetric non-linear forced vibrations of free-edge circular plates, part 1: theory. Journal Of Sound And Vibration, 258, 649-676. http://doi.org/10.1006/jsvi.2002.5143